Transcribed TextTranscribed Text

1. (1.5 points) Helium diffusion through pyrex glass shows an enormously higher diffusion coefficient (D) than any other gas (25X that of hydrogen). As there is some helium present in natural gas, this phenomena can be used to separate out helium by flowing the gas through pyrex tubes with an outer diameter of 2 mm (R2) and an inner diameter of 1 mm (R1). Assume the process is diffusion-limited (i.e. can ignore momentum transport). Your job is to specify tube design recommendations. You first assume that you can unroll the tube, with a concentration of He on one side (Cin = 10° g/cm²) and a concentration (Caut o) on the other side, which is pumped away to storage tanks. You can use the term 8 to indicate the thickness of the pyrex. If the diffusion coefficient for He through pyrex is 2x10 cm2/s what is your flux (J)? What is your flux if you account for the area of tube array with total length m (i.e. 200 tubes each 10 long)? Note, you should obtain two values, one each if you consider the inner diameter versus the outer diameter of the tube. What design criteria (in terms of 6, D, and AC) would you recommend to improve throughput? 2. (1.5 points) Using the same scenario above, derive an expression for the flux times the area if the tubes were to remain as cylinders, as a function of the radius r. Calculate the flux at R1 and R2. What new design criteria would you give? Is it better to collect the He on the inside or the outside of the tubes? Which is easier to clean in an array? 3. (2 points) Liposomes are small spherical lipid bilayer membranes which can be used to enclose high- molecular weight drugs and deliver them at a controlled rate. However, because the liposome can interact with the immune system, biomedical engineers often surround the liposome with a protective "encapsulant" material, like boly-L-lysine. The liposome "device" can be modeled as a Membrane spherical system with the lipid membrane at radius R, (Ri) and the encapsulant between Ri and Re. Transport through the very thin lipid membrane (J) can be modeled using a mass transfer coefficient C=C1 as:Ja - no (Ci Co). where C is the concentration inside the membrane and Co is the concentration Encapsulant between the membrane and the encapsulant. Diffusion through the encapsulant material has diffusivity D. Necessary data: Ri = 0.01 cm; Re 0.02 cm, D 10-7 cm2/s. You anassume that the drug leaves the device so slowly, that for all practical purposes, we can assume steady-state behavior. Start with mass balance in the radial direction, derive the differential equation for steady-state diffusion of the drug through the encapsulant. Solve this differential equation, using the boundary conditions: o When Ri, C=Co; When Re C=0 Use the solution above to write expressions for the flux of J, and sphere area A as a function of r. Note, the product of J, 'Area should be independent of r and depend on Ca. If the drug delivery is limited by diffusion through the encapsulant, Co can be approximate by C: What is Jr* 'Area, in terms of C? If the drug delivery is limited by transport through the membrane, we can assume Co=0. What is the product of Jr*Area in terms of C? You tanuse ho 1.4 x10 cm/s. What will the concentration profile look like assuming transport is controlled by the membrane? What if it is controlled by the encapsulant? Note that your units for parts above are: Ci (cm³/s) which indicates that these expressions are for overall rates of delivery. Based on this idea, does the membrane or the encapsulant control the delivery?

Solution PreviewSolution Preview

These solutions may offer step-by-step problem-solving explanations or good writing examples that include modern styles of formatting and construction of bibliographies out of text citations and references. Students may use these solutions for personal skill-building and practice. Unethical use is strictly forbidden.

    By purchasing this solution you'll be able to access the following files:

    for this solution

    or FREE if you
    register a new account!

    PayPal, G Pay, ApplePay, Amazon Pay, and all major credit cards accepted.

    Find A Tutor

    View available Transport Phenomena Tutors

    Get College Homework Help.

    Are you sure you don't want to upload any files?

    Fast tutor response requires as much info as possible.

    Upload a file
    Continue without uploading

    We couldn't find that subject.
    Please select the best match from the list below.

    We'll send you an email right away. If it's not in your inbox, check your spam folder.

    • 1
    • 2
    • 3
    Live Chats