Consider the two homomorphisms phi_0:Z[x] −→ Z defined by 0(f(x)) = f(0) and Rho:Z −→ Z5 defined by (n) = ¯n.
We have proven that each of these maps is a ring homomorphism, and also that the composition of two ring homomorphisms is again a ring homomorphism. Therefore Psi = Rho ◦ Phi_0 is a ring homomorphism from Z[x] to Z5.
Let I = ker( Psi).
(a) Prove that I is a maximal ideal of Z[x].
Hint. Sometimes the indirect approach is easier.
(b) Recall that an ideal of a ring R is principal when it is of the form aR = <a> for some a ∈ R.
Prove that I is not a principal ideal.
Hint. Suppose that I is principal. What are the possible generators for I?
Now show that they all generate something other than I.
(c) Give a non-zero prime ideal of Z[x] that is not maximal.
Hint. What about an ideal contained in I?

Solution PreviewSolution Preview

This material may consist of step-by-step explanations on how to solve a problem or examples of proper writing, including the use of citations, references, bibliographies, and formatting. This material is made available for the sole purpose of studying and learning - misuse is strictly forbidden.

    By purchasing this solution you'll be able to access the following files:

    for this solution

    or FREE if you
    register a new account!

    PayPal, G Pay, ApplePay, Amazon Pay, and all major credit cards accepted.

    Find A Tutor

    View available Abstract Algebra Tutors

    Get College Homework Help.

    Are you sure you don't want to upload any files?

    Fast tutor response requires as much info as possible.

    Upload a file
    Continue without uploading

    We couldn't find that subject.
    Please select the best match from the list below.

    We'll send you an email right away. If it's not in your inbox, check your spam folder.

    • 1
    • 2
    • 3
    Live Chats