Question

On clean paper, legibly print or write, in clear and concise English, a description of the development of the definite integral over a segment [a, b]. You may use a specific function or a general function, f. Your description should be logically organized, didactic, and sufficient that any individual with pre-calculus training could follow it (you do not have to explain what a derivative is). It should also include the following:

* a basic statement of the problem (curve defined by y = f(x) on an interval [a, b];
* a list of conditions necessary for the Riemann integral to exist;
* an explanation of the role that partitions, minimums or maximums and limits play in the integral;
* the role that the fundamental theorem of calculus plays in evaluating definite integrals.

Note that you can write on the Riemann integral or the Darboux integral (whichever one you are more familiar with).

Solution Preview

This material may consist of step-by-step explanations on how to solve a problem or examples of proper writing, including the use of citations, references, bibliographies, and formatting. This material is made available for the sole purpose of studying and learning - misuse is strictly forbidden.

The limit of the sum of the area of the rectangles can be represented as the integral of the function of F(x), from the limits of a and b. This sum is also the Reimann Sum, representing the area bounded by the curve and the x-axis. The limit of the Reimann sum is the Reimann limit, as the partition gets finer. The mesh of the partitions must become smaller and smaller, so that in the limit, it is zero. For a function f to be considered Reimann integrable, two conditions must be satisfied: first, the function must be bounded, second, the function must be continuous almost everywhere in the interval [a,b], i.e. the set of its points of discontinuity has measure zero, in the sense of Lebesgue measure....

This is only a preview of the solution. Please use the purchase button to see the entire solution

Related Homework Solutions

Connected Sets (160 words)
Homework Solution
$5.00
Mathematics
Calculus
Connected Sets
Planes
Points
Topology
Disjoint Union
Functions
Intervals
Circles
Differences
Alternating Series Questions
Homework Solution
$5.00
Mathematics
Alternating Series
Infinite Series
Conditions
Infinity
Derivatives
L'Hopital's Rule
Convergence
Divergence
Functions
Algebra
Calculus
Intervals
Mathematics Questions
Homework Solution
$3.00
Mathematics
Algebra
Composition
Functions
Differences
Quotients
Domain
Square Roots
Variables
Simplifying
Math Calculus Questions
Homework Solution
$50.00
Math
Calculus
Questions
Mathematics
Convergence
Set
Series
Alternating
Integral
Comparison
Ratio
Limit
Get help from a qualified tutor
Live Chats