Question

Q1) A researcher plans a study in which a crucial step is offering participants a food reward. It is important that the three food rewards be equal in appeal. Thus, a pre-study was designed in which participants were asked which of the rewards they preferred. Of the 60 participants, 16 preferred cupcakes, 26 preferred candy bars, and 18 favored dried apricots.
a) Conduct a Chi-Square Test for Goodness of Fit. (Use a .05 significance level and make sure you show all 5 steps of the hypothesis test)
b) Use the results of the Chi-Square test to describe the appeal of the food rewards.

Q2) A principal at a small school wanted to know if the racial makeup of the school staff mirrored that of the student body. The student body broke down into the following racial composition: 31 were White, 18 were Latino, 10 were African American, and 6 were other races. Of the staff members, 42 were White, 4 were Latino, 15 were African American, and 4 were other races.
a) Conduct a Chi-Square Test for Goodness of Fit to determine if the racial makeup of the staff members is different from that of the students. This can be done by treating the racial composition of the students as the expected frequency for the observed frequency of the racial composition of the staff. (Use a .05 significance level and make sure you show all 5 steps of the hypothesis test)

Q3) A new school district superintendent was preparing to reallocate resources for physically impaired students. He wanted to know if the schools in his district differed in the distribution of physically impaired students. He tested samples of 20 students from each of his five schools. He found the following:
School 1: 4 impaired and 16 unimpaired students
School 2: 1 impaired and 19 unimpaired students
School 3: 6 impaired and 14 unimpaired students
School 4: 3 impaired and 17 unimpaired students
School 5: 7 impaired and 13 unimpaired students
a) Conduct a Chi-Square Test for Independence to determine if “School Location” and “Physical Impairment” are dependent on each other. (Use a .01 significance level and make sure you show all 5 steps of the hypothesis test)

Q4) An advertising firm wanted to target television advertisements for people who dine out often. The firm conducted a study in which 75 randomly selected people noted what they watched for a week, and then they were categorized according to the type of show they watched most. They also completed a questionnaire about how often they dine out, and were divided into those that do and do not dine out often. The results were:
Dine Out Often Group               Dine Out Rarely Group
Quiz Shows: 3                           Quiz Shows: 8
Sit Coms: 9                               Sit Coms: 6
Movies: 7                                  Movies: 13
News: 8                                     News: 3
Soap Operas: 3                         Soap Operas: 15
a) Conduct a Chi-Square Test for Independence to determine if “TV Program” and “Dining Out” are dependent on each other. (Use a .05 significance level and make sure you show all 5 steps of the hypothesis test)
b) Calculate Cramer’s Phi and report its magnitude.

Solution Preview

This material may consist of step-by-step explanations on how to solve a problem or examples of proper writing, including the use of citations, references, bibliographies, and formatting. This material is made available for the sole purpose of studying and learning - misuse is strictly forbidden.

Statistics Questions

This is only a preview of the solution. Please use the purchase button to see the entire solution

Related Homework Solutions

Applied Statistics
Homework Solution
$73.00
Companies
Statistics
Mathematics
Business
Sales
Dataset
Variables
Analysis
Distribution
Visual Tools
Multiple Regression
Functions
Decisions
Managerial Report
Homework Solution
$40.00
Pelican Stores
Managerial Report
Net Sales
Payment
Customer
Scatter Plot
Descriptive Statistics
Regression Analysis Questions
Homework Solution
$20.00
Statistics
Mathematics
Regression Analysis
Office Equipment Corporation
Copiers
Regression Models
P-Value
Slope
Population
Confidence Interval
Correlation Coefficient
Prediction
Statistics Questions: Coastal and Inland Regions
Homework Solution
$25.00
Statistics
Mathematics
ANOVA
Statistical Evidence
Null Hypothesis
Total Rainfall
Mean
Inland Regions
Coastal Regions
Sample Data
Confidence Levels
Alternative Hypothesis
Statistics Problems
Homework Solution
$40.00
Statistics
Mathematics
Data Analysis
Experimental Groups
Control Groups
Student Evaluations
Test Scores
Observations
Percentage
Differences
Get help from a qualified tutor
Live Chats