Transcribed Text
This part of the exam should be completed without a calculator. Remember to show your work!
Convert the degree measure to radian measure.
1) 30°
1)
Convert the radian measure to degree measure.
2)15
2)
Find the exact value of the following expressions without using a calculator.
47t
3) tan
3)
3
4) arcsin
[
33
3
4)
2
5) cos1 [ V 2 3
5)
6) arctan (1)
6)
7) CSC (7c/2)
7)
8) sec (7c/2)
8)
9) cos 47t 3 ]
9)
10) sin (30°)
10)
PART 2  MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
nE
Solve the formulaportle'specified variable
A)n===R
R
Ir  E
n = Ir IR E
C) n=111 n = Ir IR + E
D) n = IR(Ir  E)

Solve the equation by factoring.
2) 6x2 + 27x  15 = 0
A) 1/1. 1 5
B) (2,5)
C) 1/2 1 5 
D) {3,5} 
Find the perfect square trinomial whose first two terms are given.
3) x2  6x
A) x2  6x  9
B) x2  6x + 36
C) x26x+  9
D) x2  6x + 3
Graph.
4) ===2(+2)2 =  1
y
10
5
10
5
5
10
x
5
10
A)
B)
y
y
10
10
5
5
10
5
5
10
x
10
5
5
10
x
5
10
10
C)
D)
y
y
10
10
5
5
10
5
5
10
x
10
5
5
10 x
5
5
10
10
Sketch the graph of the polynomial function.
2
5) P(x) = 3x(x  2)2
y
6
€
6
6 x
6
A)
B)
y
y
6
6
€
6
6 x
6
6 x
6
6
C)
D)
y
y
6
6
6
6 x
6
6 x
6
6
State the domain of the rational function.
6) =  +
2  4
A) (00,00)
B) (00,  2) u (2,6) u (6,00)
C) (00,  6) u (6,2) u (2, 00)
D) (00,  2) U (  2,2) u (2, 00)
For the given function, find all asymptotes of the type indicated (if there are any).
X  8
= 2 , vertical
 9
A) = = 3
B) X = 3, X =  3
C)x=3
D) X= 8
Use a graph or a table to find the limit.
8) lim 6x
X
80
A) 0
B) 00
C) 100 1

D) 80
Solve the equation.
9) 2(7  3x) 1/4
A) {3}
B) {3}
C)
1/2)
D) {1}
Find the value of the logarithmic function.
10) In(1)
A) e
B) 1
C) 0
D) 1
Write the equation as an equivalent exponential equation.
11) In(x) = 2
A) ex = 2
B) e2=x =
C) In(2) = x
D)e2=x
Simplify the expression.
12) In(e9)
A) 9 In(e)
B) 9
C) 1
D) e9
5
Rewrite the expression as a sum or difference of logarithms or multiples of logarithms.
4
7
y
13) log4
7
A) (4 loga(x))(7 loga(y))  log4(7)
B) 4 log4(x) + 7 'log4(y)  log4(7)
C) 4 log4(x)  7log4(y)  log4(7)
D) 4 log4(x) + 7 log4(y) + log4(7)
Solve the equation. If necessary, round to thousandths.
14) 4(x  3) = 14
A)  1.096
B) 4.904
C) 6.500
D) 4.253
Solve the problem.
15) Use the formula S = r0 to determine the value of S in the figure. Round to two decimal places, if necessary.
S
o
135
r = 9 in.
r
A) 3.82 in.
B) 1215 in.
C) 21.21 in.
D) 2.36 in.
Match the function with its graph.
16) 1) y = sin (x) 2) y = cos (x)
3) y =  sin (x) 4) y =  cos (x)
A)
B)
y
y
3
3
2
2
1
1
6.28
3.14
3.14
6.28 x
6.28
3.14
14
6.28 x
1
1
2
2
3
3
C)
D)
y
y
3
3
2
2
1
1
€
6.28
3.14
3.14
6.28 x
6.28
3.14
3.14
6.28 x
1
1
2
2
3
3
A) 1A, 2B, 3C, / 4D
B) 1A, 2D, 3C, 4B
C) 1C, 2A, 3B, 4D
D) 1B, 2D, 3C, 4A
17) 1) y =  CSC X 2) y =  sec X
3) y =  tan X 4) y =  cot X
A)
B)
y
y
6
6
3
3,
X
x
2m
II
TC
2TT
2m
TC
TC
2TT
3
3
6
6
C)
D)
y
y
6
6
3
3
X
x
2m
II
TC
2m
=2%
TL
TC
LTE
3
3
6
6
A) 1A, 2D, 3C, 4B
B) 1A, 2B, 3C, 4D
C) 1C, 2A, 3B, 4D
D) 1B, 2D, 3C, 4A
Find the exact value of the composition.
18) cot sin 1
A) 1
B) $115 3
9 1/2
D) 3/4 3
4
Find the exact value of the indicated trigonometric function for the given right triangle.
19)
A
60
36
C
B
Find sin A and cos A.
A) sin A =
B) sin A = cos A
C) sin A = cos
D) sin A =
Solve the right triangle with the given sides and angles.
20) a = 2.9 cm, b = 1.4 cm
A) a = 59.7° / ß = 30.3°, C = 3.2 cm
B) a = 28.9°, / ß = 61.1°, / C = 4.3 cm
C) a = 64.2° , ß = 25.8°, C = 3.2 cm
D) a = 25.8°, , ß = 64.2°, C = 3.2 cm
9
Write the expression in terms of sines and/or cosines, and then simplify.
sin x
21)
tan x
A) sec X
B) cos x
C) sin x
D) CSC x
Use identities to find the exact value of the trigonometric function.
22) Find sin a, given that cos a = < a <
A) 10
B)10
C)  453 7
D) 433 7
Find an equivalent algebraic expression for the given composition.
23) sin (arccos(x))
A) V 1
x2
x
1
"VIXA
B)
C) 
D) VT 1  x2
+
X
Use an identity to find the exact value of the expression.
24) tan TO 4 + TO 6
A) 2 +
B) V3  2
C) 2   V3
D)  2  V3
10
Simplify the expression by using a sum or difference identity.
25) sin 24° cos 21° + cos 24° sin 21°
A) V2
B) V3 2
2
D) 1/2 2 1
Use the appropriate sum or difference identity to write the given expression as a function of x alone.
26) cos (x  TC)
A) cos x
B) sin x
C) cos x
D) sin x
Use a halfangle identity to find an exact value for the following, given the information about x.
27) Find cos x given that cos 2x = 1/2 7 and 0 2x < r/w 2
4
V154
14
A) cos X =
B) cos x = 14
C) 154
cos X =
D) V 154
cos X =
13
14
Find all real numbers in the interval [0, 2mc) that satisfy the equation.
28) sin X = 1  2 sin2x
A) No solution
B) TO 2 T 6 , 57t 6
C) { 662
TO 57t 37t
D) (The 6 , 6 , 2
TO 370 570
}
11
Solve the triangle with the given parts.
29)
20
51°
a
y
26°
b
A) Y = 103°, / a = 44.4, b = 25.1
B) Y = 103°, , a = 9, b = 16
C) Y = 97°, a = 8.8, b = 15.7
D) Y = 103°, / a = 16, b = 9
Solve the triangle. Approximate values to the nearest tenth when appropriate.
30)
13.4
6.1
a
ß
16.0
A) a = 23.7°, / ß = 52.3°, Y = 104.0°
B) a = 19.7°, / ß = 54.3°, Y = 106.0°
C) a = 21.7°, / ß = 54.3°, / Y = 104.0°
D) No solution
These solutions may offer stepbystep problemsolving explanations or good writing examples that include modern styles of formatting and construction
of bibliographies out of text citations and references. Students may use these solutions for personal skillbuilding and practice.
Unethical use is strictly forbidden.