Send your subject help request
Submit your homework problem, or a general tutoring request.

Get quotes from qualified tutors
Receive a response from one of our tutors as soon as possible, sometimes within minutes!

Collaborate with your tutor online
Work together with your tutor to answer your question within minutes!

Nuclear Engineering Tutors
Available Now

2
tutors available

See 2 More Tutors
Nuclear Engineering Homework
Library

5 total solutions

See what our students are saying

Describe your homework help.

FAQ
Frequently Asked Questions

Can you help me with my homework in less than 24 hours?

Can you help me with my exam/quiz/test?

How much will it cost?

What kind of payments do you accept?

Nuclear Engineering

There are many and varied topics in the domain of nuclear and radiation engineering. A student will be exposed to the study of elements and isotopes, modern physics, special theory of relativity, wave-particle duality, preliminary quantum mechanics, atomic structure and atomic models, nuclear models and energetics, Q-values calculations, radioactivity, and the decay constant and decay dynamics.

Emphasis will be on binary nuclear reactions, the conservation laws, fission and fusion reactions, ionizing radiation interactions, cross sections and flux density, photon interactions, neutron and charged particle interactions, radiation detection, and dosimetric quantities. Additional topics include natural exposures and health effects, cancer, and radon risks.

More emphasis is on radiation detection and measurements. Topics include gas filled detectors; ionization chambers, proportional counters, GM-tubes, scintillation detectors, photomultiplier tubes, and radiation spectroscopy using scintillators. Slow and fast neutron detection are also addressed.

Introduction to the fundamentals of nuclear fission reactors, reactor types, cores and reflectors, PWRs, and BWRs, and nuclear fuel cycle will be studied. Examination of the basic concepts of neutron physics for nuclear fission reactor design will be covered. Topics include neutron interaction with matter, neutron cross-sections, nuclear fission mechanism, neutron chain-reacting systems basic concepts like neutron life cycle, multiplication factor, four and six factor formulas, and the diffusion theory for neutrons in nuclear reactors, interaction rates, neutron flux and current density, continuity equation and Fick’s law, the one-speed diffusion equation, Neutron moderation and slowing down calculations, energy dependent diffusion theory, spectrum calculations in the epi-thermal "slowing down" region and thermal region, Fermi age theory, resonance escape probability, and thermal neutron diffusion in non-multiplying media will likely be addressed. Multiplying media are also covered where criticality calculations are involved. Application of Fermi age theory is used for one region multiplying problems, but in the multi-group method to solve multi-region problems, Fermi age theory fails to work.

Thermal design of nuclear reactors is also covered. Topics include power generation in nuclear reactor core, coupling between thermal and neutron behavior of a reactor, and critical heat flux and hot channel factors. Heat removal using forced convection, radial and axial temperature distribution on reactor core fuel elements, boiling heat transfer, flow regimes and flow boiling crisis, and coolant pressure drops and determination of reactor core size.

Time dependent reactor behavior is addressed. Topics include the point kinetic equations, the prompt jump/drop, prompt critical state, control rods and chemical shim, temperature effects on reactivity, and fission product poisoning.

Of great importance are considerations of radiation shielding. Principles of gamma rays shielding and buildup factors, the point kernel method using geometric and material attenuating factors for different source geometries, multi-layered shields, principles of reactor shielding, removal cross-section, removal attenuation calculations, removal diffusion method, and coolant activation are all critical factors.

Engineering principles of radiation applications in industry and medicine include radio gauging using alpha, beta, and gamma radiation, principles of radiotracers, gauge design optimization for achieving better accuracy, and fundamentals of industrial radiography.

Read More

Since we have tutors in all Nuclear Engineering related topics, we can provide a range of different services. Our online Nuclear Engineering tutors will:

- Provide specific insight for homework assignments.
- Review broad conceptual ideas and chapters.
- Simplify complex topics into digestible pieces of information.
- Answer any Nuclear Engineering related questions.
- Tailor instruction to fit your style of learning.

With these capabilities, our college Nuclear Engineering tutors will give you the tools you need to gain a comprehensive knowledge of Nuclear Engineering you can use in future courses.

Our tutors are just as dedicated to your success in class as you are, so they are available around the clock to assist you with questions, homework, exam preparation and any Nuclear Engineering related assignments you need extra help completing.

In addition to gaining access to highly qualified tutors, you'll also strengthen your confidence level in the classroom when you work with us. This newfound confidence will allow you to apply your Nuclear Engineering knowledge in future courses and keep your education progressing smoothly.

Because our college Nuclear Engineering tutors are fully remote, seeking their help is easy. Rather than spend valuable time trying to find a local Nuclear Engineering tutor you can trust, just call on our tutors whenever you need them without any conflicting schedules getting in the way.

Start Working With Our College Nuclear Engineering Tutors

To fulfill our tutoring mission of online education, our college homework help and online tutoring centers are standing by 24/7, ready to assist college students who need homework help with all aspects of Nuclear Engineering.